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Abstract. In bipedal walking, stable balance and walking sequence are essential.
In this work, one neural network is proposed to model the balance dynamic of a
biped robot. The generalizing ability of back propagation neural network is used
to agilely characterize the performance of a fuzzy PD incremental algorithm based
on the Zero Moment Point (ZMP) criteria to balance a real biped robot structure.
The effectiveness of the implemented neural model is demonstrated by compari-
son between its output -the predicted robot's ZMP, and the real robot's ZMP value.

Some training algorithms are used to model the biped balance and its results are
reported.

1. Introduction

In recent years, there is enthusiasm to study the bipedal walking as private companies
such as Sony. Honda, etc., alongside other research institutes and universities have
invested huge amounts of human and economic resources to develop sophisticated
biped robots prototypes [1], [2], [3]. However, some researchers have followed a rather
low-cost biped robot design philosophy. Such kind of biped robots is similar to its
costly counterpart affording similar capacities to study and improve new biped walking
algorithms that in turn have resulted rather convenient. Therefore the trend of building
low-cost biped robots has been increasing worldwide [4]. [5].

In traditional legged robots, stability is maintained by keeping at least three con-
tact points on the ground surface at all times. Within biped machines. only two points
are actually contacting the ground surface that endorses the importance of implement-
ing novel algorithms to achieve balance.

There are some techniques to implement a balance control of a biped robot. Many
of them are implemented using classic control techniques while some others use either
soft-computing or artificial intelligence techniques. In this work, an incremental fuzzy
PD controller is employed to achieve balance on a biped robot [6]. One hybrid dy-
namic approach model for biped robots is proposed. It combines the inverted pendu-
lum model approach to characterize the biped's walking and one back-propagation
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neural network system identification approach to model the biped's balance. The neural
network. predicts the behavior of the ZMP during walking.

In order to test the balance control. the *Dany Walker™ biped robot structure was
designed. It has 10 degrees of freedom (DOF) with each joint being driven by a DC-
servo motor (Fig. 1 left). One modular design was chosen to allow an casy assembly
and to ecase reconfiguration to support several DOF setups. In real-time biped robot
structures. a feedback-force system at each foot has to be implemented to obtain the
ZMP that is then fed into the incremental fuzzy PD controller, calculating the ZMP
error. Then the controller adjusts the lateral robot's positions to keep the ZMP point
within the support region [6].

The dynamic of a biped robot is closely related to its structure and its mass distri-
bution [5]. Therefore the movement of the Center of Mass (COM) will have a signifi-
cant impact on the overall robot stability.

In order to achieve static stability, we place the COM as lower as possible. To
such a purpose, a short leg’s position was used (Fig. 1. left and right).

To compensate the disturbances during walking, lateral movements of the robot
were enabled by mechanical design. Thus, it was possible to control the lateral balance
of the robot by swinging the waist using 4 motors. two at the waist and two over the

ankles (Fig. 1 right).
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F_igure 1. Designed biped robot structure “Dany Walker™: left) Real structure, right) CAD de-
sign.
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This paper is organized as follows: In section 2, the biped balance theory is briefly
described. Section 3 presents the dynamic robot’s model while Section 4 discusses
some conclusions.
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2. Biped balance theory

In dynamic walking, the important control criterion is to keep the Zero Moment Point
(ZMP) within the support region (from now on, this criteria is mentioned as the “ZMP
criteria™). The use of ZMP criteria has been broadly used to generate biped control
algorithms |2}, [3].

2.1.ZMpP

The ZMP represents a point on the ground where the sum of all momentums is zero.
Using this principle, the ZMP can be computed as follows:

Zm‘(;-+g)x,—z‘m‘§r:,-zll,,0~ )
Xop ==
Z.”’A(:+g)
Z'm,(:-*ll))', ‘Z'm,x:,-z‘l,,an (2)
Yoo =
z‘m,(:+g)

where (xzap, yzyp) are the ZMP coordinates, (x:p;z) is the mass centre of the link i in
the coordinate system, m is the mass of the link i, and g is the gravitational accelera-

tion. /, and /,, are the inertia moment components, 9,y and 6, are the angular veloc-

ity around the axes x and y (taken as one point from the mass centre of the link i). The
biped balance is achieved when the ZMP is controlled and continuously corrected to
fall inside of the boundaries of the support region [6]).
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Fig. 2. Fuzzy PD incremental algorithm structure.
2.2. Balance control algorithm

In this work, the fuzzy PD algorithm for incremental control is implementced to balance
the robot [6]). The fuzzy PD incremental control algorithm has the structure illustrated
in Fig. 2. Gains Gu, Ge and Gr represent the output gains as determined by tuning.
They correspond respectively to the error (ZMP error) and error rate (ZMP rate) gains.

The value u* is the defuzzyficated output, also known as “crisp output”. The value u is
defined by:
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Fig. 6 shows the architecture used to train a back-propagation necural network and
identify the biped robot's ZMP dynamic model. First. from the real biped robot struc-
ture. (real robot's dynamics) the ZMP is obtained (ZMP (k)) and feed it to the incre-
mental fuzzy PD controller. The controller produces an output M(k) (lateral motors
output) to correct the ZMP inside of the support polygon. M(k-1), M(k-2) and ZAMP(k-
1) are respectively the controlier output delayed one time unit, two time unit. and the
ZMP dclayed one time unit.

Mk)
Bipedrobot |——7—9{ Fuzzy PDinc | —P
structure controller
M(k-1)
A(k) ZMP(k) —>
M(k-2) ZMP(k)

]

ZMP(k-1)

Training vector

Fig. 6. Architecture to identify the biped robot's ZMP dynamic model.

Thus, to model the biped robot's balance dynamics, a back propagation ncural
network with four input neurons and an output neuron and with linear output activation
function. was choose. The network was trained offline in batch mode, using data col-
lected from the real walking operation of the biped robot. Some different training algo-
rithms were tested for the network training, each; obtain a different biped robot's ZMP

dynamic model performance.

3.1.1. Neural Network model's performance

The in general a neural network performance could depend on many factors. including
the complexity of the problem, the number of data points in the training set. the num-
ber of weights and biases in the network, the error goal, and the application it self
(discriminant analysis, regression, etc). The last, is our case, since the goal is to find,
means a neural network. a function approximation which model the biped robot's ZMP
dynamic. The criteria to know which training algorithm better describes the ZMP ro-
bot's dynamic at walking will be a compromise betwecn the velocity and economy of

the algorithm.
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The neural network was training using difTerent training methods. To test the per-
formance of each of them, the co

ntroller’s output at walking was fced to the ncural
network. Expecting that the neural network. now trained with the biped's ZMP dynam-
ics, be able to predict the ZMP that the real bipcd robot will produce.
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Fig. 7. Performance of some neural network training algorithms to proximate the real
ZMP.
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In Figure 7 a data set of ZMP values obtained at real walking, are compared with
the ZMP produced by the neural network using different training algorithms. Fig. 7,
shows the performance with the next training algorithms: a) Levenberg-Marquardt, b)
Resilient Back-propagation, c) Scaled Conjugate Gradient, d) One-Step Secant and e)
BFGS Quasi-Newton (Broyden, Fletcher. Goldfarb, and Shanno (BFGS)).

4. Conclusions

A neural network used to model the nonlincar biped robot's lateral movements dy-
namic was implemented. The strategy was to usc a neural network as a system identi-
fier; in this case the system to be identified is the biped robot's lateral movement’s
dynamics. A part of the lateral movements are generated by the fuzzy controller to
correcting the ZMP. The ZMP dynamic was the parameter learned by the neural net-
work. Some different training methods were used to compare the performance of the
neural network to approximate the real robot's ZMP dynamic at walking. In all the
different training algorithms, a back-propagation neural network architecture was
choose. From each tested algorithms can be concluded:

a) Levenberg-Marquardt training algorithm

In general, this algorithm has the fastest convergence on function approximation prob-
lems. This advantage is especially noticeable if very accurate training is required. In
many cases, Levenberg-Marquardt training algorithm is able to obtain lower mean
square errors than any of the other algorithms tested. However, as the number of
weights in the network increases, the advantage of the Levenberg-Marquardt training
algorithm decreases. The performance of the algorithm to approximate the ZMP dy-
namics was quite gut (Figure 7(a)). A disadvantage, was that the storage requirements
of Levenberg-Marquardt training algorithm were larger than the other tested algo-

rithms.
b) Resilient Back-propagation training algorithm

The Resilient Back-propagation training algorithm is the fastest algorithm on discrimi-
nant analysis problems. However, in general it does not perform well on function ap-
proximation problems. Its performance also degrades as the error goal is reduced. An
advantage is that its memory requirements are relatively small in comparison to the
other tested algorithms. Figure 7(b). shows the performance of the resilient back propa-
gation training algorithm to model the biped robot's ZMP dynamics.

¢) Scaled Conjugate Gradient (SCG) training algorithm

'I*h-c -SCG algorithm demonstrated to be almost as fast as the Levenberg-Marquardt
training algorithm on the approximation of the biped balance dynamics. How ever.
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Figure 7 c) shows that its performance to model the biped robot's ZMP dynamics was
inferior to the two first training algorithms. An important advantage is that the conju-
gate gradient algorithm has relatively modest memory requircments.

d) Onc-Step Sccant training algorithm (OSS)

The one step secant (OSS) method is an attempt to bridge the gap between the conju-
gate gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm
does not store the complete Hessian matrix; it assumes that at each iteration, the previ-
ous Hessian was the identity matrix. This has the additional advantage that the new
search direction can be calculated without computing a matrix inverse. However, Fig-
ure 7(d) shows that the performance of the OSS training algorithm 10 model the biped
robot's ZMP dynamics was even inferior to the first tree training algorithms. An advan-
tage is that it required less storage and computation per epoch than the BFGS algo-
rithm, but required slightly more storage and computation per epoch than the conjugate
gradient algorithms. It can be considered a compromise between full quasi-Newton
algorithms and conjugate gradicent algorithms.

) BFGS Quasi-Newton training algorithm

In Figure 7(c) and 7(a) a similar performance between the Quasi-Newton and Leven-
berg-Marquardt training algorithm can be observed. The Quasi-Newton does not re-
quire as much storage as Levenberg-Marquardt training algorithm, but the computation
required does increase geometrically with the size of the network, since the equivalent
of a matrix inverse must be computed at each iteration.

As a result from these test, the BFGS Quasi-Newton training algorithm to model

the robot's ZMP dynamics is prefer for its convenient relationship between computa-
tional economy and fast convergence.
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